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The ML Paper Package (mlpaper)

Easy benchmarking of machine learning models with sklearn interface with
statistical tests built-in.


Usage for classification problems

First, we consider the plot_classifier_comparison.py demo file. This extends
the standard sklearn classifier
comparison [https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html]
but also demos the ease of mlpaper to create a performance
report.

In this demo, we use the example of the three toy data sets and ten classifiers from the sklearn example:


[image: sklearn]


The mlpaper package can benchmark all of the of these methods and created a properly formatted LaTeX table (with error bars) in a few commands.
This generates a results table for copy-and-paste into a ML paper .tex file in a few commands.

Pandas tables with the performance results of all the methods can be
built by:

import mlpaper.classification as btc
from mlpaper.classification import STD_BINARY_CURVES, STD_CLASS_LOSS

performance_df, performance_curves_dict = btc.just_benchmark(
    X_train,
    y_train,
    X_test,
    y_test,
    2,
    classifiers,
    STD_CLASS_LOSS,
    STD_BINARY_CURVES,
    ref_method,
)





This benchmarks all the models in classifiers on the data (X_train,
y_train, X_test, y_test) for 2-class classification. It uses
the loss function described in the dictionaries STD_CLASS_LOSS, and
the curves (e.g., ROC, PR) in STD_BINARY_CURVES. The ref_method
defines the model that is the reference to compare against for assessing
statistically significant performance gains.

The sciprint module formats these tables for scientific presentation.
The performance dictionaries can be converted to cleanly formatted
tables: correct significant figures, shifting of exponent for
compactness, thresholding huge/small (crap limit) results, and correct
alignment of decimal points, units in headers, etc. Here we use:

import mlpaper.sciprint as sp

print(
    sp.just_format_it(
        performance_df,
        shift_mod=3,
        unit_dict={"NLL": "nats"},
        crap_limit_min={"AUPRG": -1},
        EB_limit={"AUPRG": -1},
        non_finite_fmt={sp.NAN_STR: "N/A"},
        use_tex=False,
    )
)





to export the results in plain text, or for LaTeX we use:

import mlpaper.sciprint as sp

print(
    sp.just_format_it(
        performance_df,
        shift_mod=3,
        unit_dict={"NLL": "nats"},
        crap_limit_min={"AUPRG": -1},
        EB_limit={"AUPRG": -1},
        non_finite_fmt={sp.NAN_STR: "{--}"},
        use_tex=True,
    )
)






Output


Dataset 0 (Moons)

                          AP        p        AUC        p    AUPRG        p      Brier        p NLL (nats)        p     sphere        p   zero one        p
AdaBoost           0.93(16)   <0.0001  0.950(96)  <0.0001  0.90464  <0.0001  0.42(14)   <0.0001  0.368(80)  <0.0001  0.36(15)   <0.0001  0.075(86)  <0.0001
Decision Tree      0.95(13)   <0.0001  0.966(70)  <0.0001  0.93860  <0.0001  0.18(25)   <0.0001  0.40(71)    0.4072  0.16(22)   <0.0001  0.050(71)  <0.0001
Gaussian Process   0.90(22)   <0.0001  0.95(12)   <0.0001  0.92081  <0.0001  0.27(17)   <0.0001  0.27(11)   <0.0001  0.22(16)   <0.0001  0.025(51)  <0.0001
Linear SVM         0.952(99)  <0.0001  0.950(77)  <0.0001  0.88705  <0.0001  0.34(24)   <0.0001  0.29(16)   <0.0001  0.31(24)   <0.0001  0.15(12)    0.0006
Naive Bayes        0.957(97)  <0.0001  0.957(68)  <0.0001  0.89782  <0.0001  0.34(25)   <0.0001  0.28(18)   <0.0001  0.31(24)   <0.0001  0.13(11)    0.0002
Nearest Neighbors  0.94(14)   <0.0001  0.969(69)  <0.0001  0.93498  <0.0001  0.18(21)   <0.0001  0.42(70)    0.4241  0.15(18)   <0.0001  0.025(51)  <0.0001
Neural Net         0.957(91)  <0.0001  0.957(69)  <0.0001  0.89782  <0.0001  0.33(23)   <0.0001  0.28(15)   <0.0001  0.30(22)   <0.0001  0.100(98)  <0.0001
QDA                0.951(91)  <0.0001  0.950(80)  <0.0001  0.88517  <0.0001  0.34(27)   <0.0001  0.29(21)    0.0003  0.31(25)   <0.0001  0.15(12)    0.0006
RBF SVM            0.93(18)   <0.0001  0.957(94)  <0.0001  0.92081  <0.0001  0.14(20)   <0.0001  0.18(18)   <0.0001  0.12(17)   <0.0001  0.025(51)  <0.0001
Random Forest      0.965(82)  <0.0001  0.949(84)  <0.0001  0.92147  <0.0001  0.31(26)   <0.0001  0.52(70)    0.6099  0.28(24)   <0.0001  0.100(98)  <0.0001
iid                0.53(16)       N/A  0.5(0)         N/A  0(0)         N/A  1.004(22)      N/A  0.695(11)      N/A  1.005(27)      N/A  0.53(17)       N/A








Dataset 0 (Moons) in LaTeX

\begin{tabular}{|l|Sr|Sr|Sr|Sr|Sr|Sr|Sr|}
\toprule
{}                &       {AP} &      {p} &      {AUC} &      {p} &  {AUPRG} &      {p} &    {Brier} &      {p} & {NLL (nats)} &      {p} &   {sphere} &      {p} & {zero one} &      {p} \\
\midrule
AdaBoost          &  0.93(16)  &  <0.0001 &  0.950(96) &  <0.0001 &  0.90464 &  <0.0001 &  0.42(14)  &  <0.0001 &    0.368(80) &  <0.0001 &  0.36(15)  &  <0.0001 &  0.075(86) &  <0.0001 \\
Decision Tree     &  0.95(13)  &  <0.0001 &  0.966(70) &  <0.0001 &  0.93860 &  <0.0001 &  0.18(25)  &  <0.0001 &    0.40(71)  &   0.4072 &  0.16(22)  &  <0.0001 &  0.050(71) &  <0.0001 \\
Gaussian Process  &  0.90(22)  &  <0.0001 &  0.95(12)  &  <0.0001 &  0.92081 &  <0.0001 &  0.27(17)  &  <0.0001 &    0.27(11)  &  <0.0001 &  0.22(16)  &  <0.0001 &  0.025(51) &  <0.0001 \\
Linear SVM        &  0.952(99) &  <0.0001 &  0.950(77) &  <0.0001 &  0.88705 &  <0.0001 &  0.34(24)  &  <0.0001 &    0.29(16)  &  <0.0001 &  0.31(24)  &  <0.0001 &  0.15(12)  &   0.0006 \\
Naive Bayes       &  0.957(97) &  <0.0001 &  0.957(68) &  <0.0001 &  0.89782 &  <0.0001 &  0.34(25)  &  <0.0001 &    0.28(18)  &  <0.0001 &  0.31(24)  &  <0.0001 &  0.13(11)  &   0.0002 \\
Nearest Neighbors &  0.94(14)  &  <0.0001 &  0.969(69) &  <0.0001 &  0.93498 &  <0.0001 &  0.18(21)  &  <0.0001 &    0.42(70)  &   0.4241 &  0.15(18)  &  <0.0001 &  0.025(51) &  <0.0001 \\
Neural Net        &  0.957(91) &  <0.0001 &  0.957(69) &  <0.0001 &  0.89782 &  <0.0001 &  0.33(23)  &  <0.0001 &    0.28(15)  &  <0.0001 &  0.30(22)  &  <0.0001 &  0.100(98) &  <0.0001 \\
QDA               &  0.951(91) &  <0.0001 &  0.950(80) &  <0.0001 &  0.88517 &  <0.0001 &  0.34(27)  &  <0.0001 &    0.29(21)  &   0.0003 &  0.31(25)  &  <0.0001 &  0.15(12)  &   0.0006 \\
RBF SVM           &  0.93(18)  &  <0.0001 &  0.957(94) &  <0.0001 &  0.92081 &  <0.0001 &  0.14(20)  &  <0.0001 &    0.18(18)  &  <0.0001 &  0.12(17)  &  <0.0001 &  0.025(51) &  <0.0001 \\
Random Forest     &  0.965(82) &  <0.0001 &  0.949(84) &  <0.0001 &  0.92147 &  <0.0001 &  0.31(26)  &  <0.0001 &    0.52(70)  &   0.6099 &  0.28(24)  &  <0.0001 &  0.100(98) &  <0.0001 \\
iid               &  0.53(16)  &     {--} &  0.5(0)    &     {--} &  0(0)    &     {--} &  1.004(22) &     {--} &    0.695(11) &     {--} &  1.005(27) &     {--} &  0.53(17)  &     {--} \\
\bottomrule
\end{tabular}








Dataset 1 (Circles)

                           AP        p        AUC        p      AUPRG        p      Brier        p NLL (nats)        p     sphere        p   zero one        p
AdaBoost           0.938(82)   <0.0001  0.89(12)   <0.0001  0.76091    <0.0001  0.773(96)  <0.0001  0.576(50)  <0.0001  0.73(12)   <0.0001  0.17(13)   <0.0001
Decision Tree      0.86(16)    <0.0001  0.80(13)   <0.0001  0.76316    <0.0001  0.80(52)    0.3009  2.8(18)     0.0270  0.68(45)    0.0792  0.20(13)    0.0003
Gaussian Process   0.977(47)   <0.0001  0.964(60)  <0.0001  0.93049    <0.0001  0.39(23)   <0.0001  0.33(14)   <0.0001  0.36(23)   <0.0001  0.100(98)  <0.0001
Linear SVM         0.53(18)     0.1621  0.51(21)    0.8580  0.19756     0.3660  1.066(80)   0.1521  0.726(41)   0.1514  1.079(96)   0.1531  0.60(16)    1.0000
Naive Bayes        0.9983(82)  <0.0001  0.997(13)  <0.0001  0.996(21)  <0.0001  0.64(20)   <0.0001  0.48(12)   <0.0001  0.63(21)   <0.0001  0.30(15)    0.0003
Nearest Neighbors  0.996(15)   <0.0001  0.966(49)  <0.0001  0.991(47)  <0.0001  0.30(16)   <0.0001  0.23(11)   <0.0001  0.28(16)   <0.0001  0.075(86)  <0.0001
Neural Net         0.993(23)   <0.0001  0.990(32)  <0.0001  0.982(79)  <0.0001  0.69(14)   <0.0001  0.525(74)  <0.0001  0.65(16)   <0.0001  0.25(15)   <0.0001
QDA                0.9983(83)  <0.0001  0.997(11)  <0.0001  0.996(32)  <0.0001  0.63(19)   <0.0001  0.47(11)   <0.0001  0.61(20)   <0.0001  0.28(15)   <0.0001
RBF SVM            0.979(44)   <0.0001  0.966(63)  <0.0001  0.93680    <0.0001  0.34(22)   <0.0001  0.29(14)   <0.0001  0.31(22)   <0.0001  0.100(98)  <0.0001
Random Forest      0.90(13)    <0.0001  0.85(16)   <0.0001  0.64512     0.0021  0.65(30)    0.0070  0.48(19)    0.0094  0.62(31)    0.0047  0.23(14)    0.0006
iid                0.60(16)        N/A  0.5(0)         N/A  0(0)           N/A  1.071(85)      N/A  0.729(43)      N/A  1.08(11)       N/A  0.60(16)       N/A








Dataset 1 (Circles) in LaTeX

\begin{tabular}{|l|Sr|Sr|Sr|Sr|Sr|Sr|Sr|}
\toprule
{}                &        {AP} &      {p} &      {AUC} &      {p} &    {AUPRG} &      {p} &    {Brier} &      {p} & {NLL (nats)} &      {p} &   {sphere} &      {p} & {zero one} &      {p} \\
\midrule
AdaBoost          &  0.938(82)  &  <0.0001 &  0.89(12)  &  <0.0001 &  0.76091   &  <0.0001 &  0.773(96) &  <0.0001 &    0.576(50) &  <0.0001 &  0.73(12)  &  <0.0001 &  0.17(13)  &  <0.0001 \\
Decision Tree     &  0.86(16)   &  <0.0001 &  0.80(13)  &  <0.0001 &  0.76316   &  <0.0001 &  0.80(52)  &   0.3009 &    2.8(18)   &   0.0270 &  0.68(45)  &   0.0792 &  0.20(13)  &   0.0003 \\
Gaussian Process  &  0.977(47)  &  <0.0001 &  0.964(60) &  <0.0001 &  0.93049   &  <0.0001 &  0.39(23)  &  <0.0001 &    0.33(14)  &  <0.0001 &  0.36(23)  &  <0.0001 &  0.100(98) &  <0.0001 \\
Linear SVM        &  0.53(18)   &   0.1621 &  0.51(21)  &   0.8580 &  0.19756   &   0.3660 &  1.066(80) &   0.1521 &    0.726(41) &   0.1514 &  1.079(96) &   0.1531 &  0.60(16)  &   1.0000 \\
Naive Bayes       &  0.9983(82) &  <0.0001 &  0.997(13) &  <0.0001 &  0.996(21) &  <0.0001 &  0.64(20)  &  <0.0001 &    0.48(12)  &  <0.0001 &  0.63(21)  &  <0.0001 &  0.30(15)  &   0.0003 \\
Nearest Neighbors &  0.996(15)  &  <0.0001 &  0.966(49) &  <0.0001 &  0.991(47) &  <0.0001 &  0.30(16)  &  <0.0001 &    0.23(11)  &  <0.0001 &  0.28(16)  &  <0.0001 &  0.075(86) &  <0.0001 \\
Neural Net        &  0.993(23)  &  <0.0001 &  0.990(32) &  <0.0001 &  0.982(79) &  <0.0001 &  0.69(14)  &  <0.0001 &    0.525(74) &  <0.0001 &  0.65(16)  &  <0.0001 &  0.25(15)  &  <0.0001 \\
QDA               &  0.9983(83) &  <0.0001 &  0.997(11) &  <0.0001 &  0.996(32) &  <0.0001 &  0.63(19)  &  <0.0001 &    0.47(11)  &  <0.0001 &  0.61(20)  &  <0.0001 &  0.28(15)  &  <0.0001 \\
RBF SVM           &  0.979(44)  &  <0.0001 &  0.966(63) &  <0.0001 &  0.93680   &  <0.0001 &  0.34(22)  &  <0.0001 &    0.29(14)  &  <0.0001 &  0.31(22)  &  <0.0001 &  0.100(98) &  <0.0001 \\
Random Forest     &  0.90(13)   &  <0.0001 &  0.85(16)  &  <0.0001 &  0.64512   &   0.0021 &  0.65(30)  &   0.0070 &    0.48(19)  &   0.0094 &  0.62(31)  &   0.0047 &  0.23(14)  &   0.0006 \\
iid               &  0.60(16)   &     {--} &  0.5(0)    &     {--} &  0(0)      &     {--} &  1.071(85) &     {--} &    0.729(43) &     {--} &  1.08(11)  &     {--} &  0.60(16)  &     {--} \\
\bottomrule
\end{tabular}








Dataset 2 (Linear)

                          AP        p        AUC        p      AUPRG        p      Brier        p NLL (nats)        p     sphere        p   zero one        p
AdaBoost           0.984(43)  <0.0001  0.962(87)  <0.0001  0.96274    <0.0001  0.21(23)   <0.0001  0.27(29)    0.0034  0.18(20)   <0.0001  0.050(71)  <0.0001
Decision Tree      0.91(14)   <0.0001  0.922(98)  <0.0001  0.88360    <0.0001  0.30(35)    0.0002  1.0(12)     0.5706  0.26(30)   <0.0001  0.075(86)  <0.0001
Gaussian Process   0.984(38)  <0.0001  0.977(52)  <0.0001  0.96794    <0.0001  0.25(24)   <0.0001  0.23(17)   <0.0001  0.23(23)   <0.0001  0.075(86)  <0.0001
Linear SVM         0.994(26)  <0.0001  0.992(23)  <0.0001  0.989(47)  <0.0001  0.17(14)   <0.0001  0.163(86)  <0.0001  0.16(15)   <0.0001  0.050(71)  <0.0001
Naive Bayes        0.992(25)  <0.0001  0.990(32)  <0.0001  0.986(50)  <0.0001  0.18(20)   <0.0001  0.15(15)   <0.0001  0.17(19)   <0.0001  0.050(71)  <0.0001
Nearest Neighbors  0.992(25)  <0.0001  0.946(78)  <0.0001  0.985(67)  <0.0001  0.29(30)   <0.0001  0.76(98)    0.9063  0.25(26)   <0.0001  0.075(86)  <0.0001
Neural Net         0.987(35)  <0.0001  0.982(40)  <0.0001  0.975(83)  <0.0001  0.24(19)   <0.0001  0.22(12)   <0.0001  0.21(19)   <0.0001  0.050(71)  <0.0001
QDA                0.984(42)  <0.0001  0.975(57)  <0.0001  0.96560    <0.0001  0.21(24)   <0.0001  0.23(28)    0.0014  0.19(22)   <0.0001  0.075(86)  <0.0001
RBF SVM            0.980(45)  <0.0001  0.970(62)  <0.0001  0.95778    <0.0001  0.21(25)   <0.0001  0.20(21)   <0.0001  0.18(23)   <0.0001  0.050(71)  <0.0001
Random Forest      0.990(25)  <0.0001  0.968(58)  <0.0001  0.981(73)  <0.0001  0.25(25)   <0.0001  0.47(70)    0.5055  0.23(23)   <0.0001  0.075(86)  <0.0001
iid                0.55(16)       N/A  0.5(0)         N/A  0(0)           N/A  1.018(43)      N/A  0.702(22)      N/A  1.021(52)      N/A  0.55(17)       N/A








Dataset 2 (Linear) in LaTeX

\begin{tabular}{|l|Sr|Sr|Sr|Sr|Sr|Sr|Sr|}
\toprule
{}                &       {AP} &      {p} &      {AUC} &      {p} &    {AUPRG} &      {p} &    {Brier} &      {p} & {NLL (nats)} &      {p} &   {sphere} &      {p} & {zero one} &      {p} \\
\midrule
AdaBoost          &  0.984(43) &  <0.0001 &  0.962(87) &  <0.0001 &  0.96274   &  <0.0001 &  0.21(23)  &  <0.0001 &    0.27(29)  &   0.0034 &  0.18(20)  &  <0.0001 &  0.050(71) &  <0.0001 \\
Decision Tree     &  0.91(14)  &  <0.0001 &  0.922(98) &  <0.0001 &  0.88360   &  <0.0001 &  0.30(35)  &   0.0002 &    1.0(12)   &   0.5706 &  0.26(30)  &  <0.0001 &  0.075(86) &  <0.0001 \\
Gaussian Process  &  0.984(38) &  <0.0001 &  0.977(52) &  <0.0001 &  0.96794   &  <0.0001 &  0.25(24)  &  <0.0001 &    0.23(17)  &  <0.0001 &  0.23(23)  &  <0.0001 &  0.075(86) &  <0.0001 \\
Linear SVM        &  0.994(26) &  <0.0001 &  0.992(23) &  <0.0001 &  0.989(47) &  <0.0001 &  0.17(14)  &  <0.0001 &    0.163(86) &  <0.0001 &  0.16(15)  &  <0.0001 &  0.050(71) &  <0.0001 \\
Naive Bayes       &  0.992(25) &  <0.0001 &  0.990(32) &  <0.0001 &  0.986(50) &  <0.0001 &  0.18(20)  &  <0.0001 &    0.15(15)  &  <0.0001 &  0.17(19)  &  <0.0001 &  0.050(71) &  <0.0001 \\
Nearest Neighbors &  0.992(25) &  <0.0001 &  0.946(78) &  <0.0001 &  0.985(67) &  <0.0001 &  0.29(30)  &  <0.0001 &    0.76(98)  &   0.9063 &  0.25(26)  &  <0.0001 &  0.075(86) &  <0.0001 \\
Neural Net        &  0.987(35) &  <0.0001 &  0.982(40) &  <0.0001 &  0.975(83) &  <0.0001 &  0.24(19)  &  <0.0001 &    0.22(12)  &  <0.0001 &  0.21(19)  &  <0.0001 &  0.050(71) &  <0.0001 \\
QDA               &  0.984(42) &  <0.0001 &  0.975(57) &  <0.0001 &  0.96560   &  <0.0001 &  0.21(24)  &  <0.0001 &    0.23(28)  &   0.0014 &  0.19(22)  &  <0.0001 &  0.075(86) &  <0.0001 \\
RBF SVM           &  0.980(45) &  <0.0001 &  0.970(62) &  <0.0001 &  0.95778   &  <0.0001 &  0.21(25)  &  <0.0001 &    0.20(21)  &  <0.0001 &  0.18(23)  &  <0.0001 &  0.050(71) &  <0.0001 \\
Random Forest     &  0.990(25) &  <0.0001 &  0.968(58) &  <0.0001 &  0.981(73) &  <0.0001 &  0.25(25)  &  <0.0001 &    0.47(70)  &   0.5055 &  0.23(23)  &  <0.0001 &  0.075(86) &  <0.0001 \\
iid               &  0.55(16)  &     {--} &  0.5(0)    &     {--} &  0(0)      &     {--} &  1.018(43) &     {--} &    0.702(22) &     {--} &  1.021(52) &     {--} &  0.55(17)  &     {--} \\
\bottomrule
\end{tabular}








ROC curves

The just_benchmark routines also produces ROC curves with error bars from bootstrap analysis, which have been vectorized for speed:


[image: ROC]





Precision-recall curves


[image: PR]





Precision-recall-gain curves


[image: PRG]









Usage for regression problems

The mlpaper package can also be applied to a regression problem with:

import mlpaper.regression as btr

full_tbl = btr.just_benchmark(X_train, y_train, X_test, y_test, regressors, STD_REGR_LOSS, "iid", pairwise_CI=True)





Here we have used pairwise_CI=True which makes the confidence
intervals based on the uncertainty of the loss difference to the
reference method rather than a confidence interval on the actual loss.


Output

By extending the sklearn regression
demo [https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_compare_gpr_krr.html#sphx-glr-auto-examples-gaussian-process-plot-compare-gpr-krr-py]
we can make simple formatted tables:

             MAE       p          MSE        p   NLL (nats)        p
BLR  0.96933(30)  0.0979  1.39881(67)   0.0665  1.58842(57)   0.9828
GPR  0.75(13)     0.0009  0.75(28)     <0.0001  1.27(12)     <0.0001
iid  0.96908         N/A  1.3982           N/A  1.5884           N/A





or in LaTeX:

\begin{tabular}{|l|Sr|Sr|Sr|}
\toprule
{}  &        {MAE} &     {p} &        {MSE} &      {p} & {NLL (nats)} &      {p} \\
\midrule
BLR &  0.96933(30) &  0.0979 &  1.39881(67) &   0.0665 &  1.58842(57) &   0.9828 \\
GPR &  0.75(13)    &  0.0009 &  0.75(28)    &  <0.0001 &  1.27(12)    &  <0.0001 \\
iid &  0.96908     &     N/A &  1.3982      &      N/A &  1.5884      &      N/A \\
\bottomrule
\end{tabular}






[image: regression demo]







Installation

Only Python>=3.5 is officially supported, but older versions of Python likely work as well.

The core package itself can be installed with:

pip install mlpaper





To also get the dependencies for the demos in the README install with

pip install mlpaper[demo]








Contributing

The following instructions have been tested with Python 3.7.4 on Mac OS (10.14.6).


Install in editable mode

First, define the variables for the paths we will use:

GIT=/path/to/where/you/put/repos
ENVS=/path/to/where/you/put/virtualenvs





Then clone the repo in your git directory $GIT:

cd $GIT
git clone https://github.com/rdturnermtl/mlpaper.git





Inside your virtual environments folder $ENVS, make the environment:

cd $ENVS
virtualenv mlpaper --python=python3.7
source $ENVS/mlpaper/bin/activate





Now we can install the pip dependencies. Move back into your git directory and run

cd $GIT/mlpaper
pip install -r requirements/base.txt
pip install -e .  # Install the package itself








Contributor tools

First, we need to setup some needed tools:

cd $ENVS
virtualenv mlpaper_tools --python=python3.7
source $ENVS/mlpaper_tools/bin/activate
pip install -r $GIT/mlpaper/requirements/tools.txt





To install the pre-commit hooks for contributing run (in the mlpaper_tools environment):

cd $GIT/mlpaper
pre-commit install





To rebuild the requirements, we can run:

cd $GIT/mlpaper

# Check if there any discrepancies in the .in files
pipreqs mlpaper/ --diff requirements/base.in
pipreqs tests/ --diff requirements/test.in
pipreqs demos/ --diff requirements/demo.in
pipreqs docs/ --diff requirements/docs.in

# Regenerate the .txt files from .in files
pip-compile-multi --no-upgrade








Generating the documentation

First setup the environment for building with Sphinx:

cd $ENVS
virtualenv mlpaper_docs --python=python3.7
source $ENVS/mlpaper_docs/bin/activate
pip install -r $GIT/mlpaper/requirements/docs.txt





Then we can do the build:

cd $GIT/mlpaper/docs
make all
open _build/html/index.html





Documentation will be available in all formats in Makefile. Use make html to only generate the HTML documentation.




Running the tests

The tests for this package can be run with:

cd $GIT/mlpaper
./local_test.sh





The script creates an environment using the requirements found in requirements/test.txt.
A code coverage report will also be produced in $GIT/mlpaper/htmlcov/index.html.




Deployment

The wheel (tar ball) for deployment as a pip installable package can be built using the script:

cd $GIT/mlpaper/
./build_wheel.sh










Links

The source [https://github.com/rdturnermtl/mlpaper/] is hosted on GitHub.

The documentation [https://mlpaper.readthedocs.io/en/latest/] is hosted at Read the Docs.

Installable from PyPI [https://pypi.org/project/mlpaper/].




License

This project is licensed under the Apache 2 License - see the LICENSE file for details.







          

      

      

    

  

    
      
          
            
  
Code Overview


Bootstrap Utilities


	
mlpaper.boot_util.basic(boot_estimates, original_estimate, confidence=0.95)

	Build confidence interval using basic boostrap method.


	Parameters

	
	boot_estimates (ndarray, shape (n_boot, ..)) – Estimated quantity across different bootstrap replications.


	original_estimate (ndarray, shape (..)) – Quantity estimated using original (non-bootstrap) data set.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence level, use 0.95 for 95% interval. Must be in (0,1).






	Returns

	
	LB (ndarray, shape (…)) – Lower end of confidence interval.


	UB (ndarray, shape (…)) – Upper end of confidence interval.















	
mlpaper.boot_util.boot_weights(N, n_boot, epsilon=0)

	Sample weights for data points that makes it equivalent to bootstrap
resampling of data points.


	Parameters

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of data points must be >= 1..


	n_boot (int [https://docs.python.org/3/library/functions.html#int]) – Number of bootstrap replicates, must be >= 1.


	epsilon (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – Minimum weight, typically 0 unless this creates numerical problems for
a down stream algorithm in which case a value such as 1e-10 is used.






	Returns

	weight – Weights equivalent to resampling for bootstrap algorithm.



	Return type

	ndarray, shape (n_boot, N)










	
mlpaper.boot_util.confidence_to_percentiles(confidence)

	Convert confidence level to percentiles in sampling distribution to
build confidence interval.


	Parameters

	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence level, use 0.95 for 95% interval. Must be in (0,1).



	Returns

	
	LB (float) – Lower end quantile in (0,1).


	UB (float) – Upper end quantile in (0,1).










Examples

>>> confidence_to_percentiles(0.95)
(2.5, 97.5)










	
mlpaper.boot_util.error_bar(boot_estimates, original_estimate, confidence=0.95)

	Build error bar using boostrap method. The results is the same
regardless of whether the percentile or basic boostrap is used for CIs.


	Parameters

	
	boot_estimates (ndarray, shape (n_boot,)) – Estimated quantity across different bootstrap replications.


	original_estimate (float [https://docs.python.org/3/library/functions.html#float]) – Quantity estimated using original (non-bootstrap) data set.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence level, use 0.95 for 95% interval. Must be in (0,1).






	Returns

	EB – Error bar around the original estimate.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
mlpaper.boot_util.percentile(boot_estimates, confidence=0.95)

	Build confidence interval using percentile boostrap method.


	Parameters

	
	boot_estimates (ndarray, shape (n_boot, ..)) – Estimated quantity across different bootstrap replications.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence level, use 0.95 for 95% interval. Must be in (0,1).






	Returns

	
	LB (ndarray, shape (…)) – Lower end of confidence interval.


	UB (ndarray, shape (…)) – Upper end of confidence interval.















	
mlpaper.boot_util.significance(boot_estimates, ref)

	Perform a two-sided bootstrap based hypothesis test on whether the
unknown quantity is equal to some reference.


	Parameters

	
	boot_estimates (ndarray, shape (n_boot,)) – Estimated quantity across different bootstrap replications.


	ref (float [https://docs.python.org/3/library/functions.html#float] or ndarray of shape (n_boot,)) – Reference value is in hypothesis test. Use a scalar value for a known
reference value or a array of n_boot bootstraped value to perform a
paired test against another unknown quantity.






	Returns

	pval – Resulting p-value of hypothesis test in (0,1).



	Return type

	float [https://docs.python.org/3/library/functions.html#float]












Benchmarking for Classification


	
class mlpaper.classification.JustNoise(n_labels=2, pseudo_count=0.0)

	Class version of iid predictor compatible with sklearn interface. Same
as sklearn.dummy.DummyClassifier(strategy='prior').






	
mlpaper.classification.brier_loss(y, log_pred_prob, rescale=True)

	Compute (rescaled) Brier loss.


	Parameters

	
	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – True labels for each classication data point.


	log_pred_prob (ndarray, shape (n_samples, n_labels)) – Array of shape (len(y), n_labels). Each row corresponds to a
categorical distribution with normalized probabilities in log scale.
Therefore, the number of columns must be at least 1.


	rescale (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, linearly rescales lost so perfect (P=1) predictions give 0.0
loss and a uniform prediction gives loss of 1.0. False gives the
standard Brier loss.






	Returns

	loss – Array of the Brier loss for the predictions on each data point in y.



	Return type

	ndarray, shape (n_samples,)










	
mlpaper.classification.check_curve(result, x_grid=None)

	Check performance curve output matches expected format and return the
curve after validation.


	Parameters

	
	curve (result of curve function, e.g., classification.roc_curve) – Curves defined by a ROC or other curve estimation.


	x_grid (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_grid,)) – If provided, check that all the curves are defined over a wider range
than the x_grid. So, when the functions are interpolated onto the range
of x_grid no extrapolation is needed.






	Returns

	curve – Returns same object passed in after some input checks. Each of the
ndarrays have shape (n_boot, n_thresholds).



	Return type

	tuple of (ndarray, ndarray, str [https://docs.python.org/3/library/stdtypes.html#str])










	
mlpaper.classification.curve_boot(y, log_pred_prob, ref, curve_f=<function roc_curve>, x_grid=None, n_boot=1000, pairwise_CI=False, confidence=0.95)

	Perform boot strap analysis of performance curve, e.g., ROC or prec-rec.
For binary classification only.


	Parameters

	
	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – Array containing true labels, must be bool or {0,1}.


	log_pred_prob (ndarray, shape (n_samples, 2)) – Array of shape (len(y), 2). Each row corresponds to a categorical
distribution with normalized probabilities in log scale. However,
many curves (e.g., ROC) are invariant to monotonic transformation and
hence linear scale could also be used.


	ref (float [https://docs.python.org/3/library/functions.html#float] or ndarray of shape (n_samples, 2)) – If ref is an rray of shape (len(y), 2): Same as log_pred_prob
except for the reference (baseline) method if a paired statistical test
is desired on the area under the curve. If ref is a scalar float:
curve_boot tests the statistical significance that the area under the
curve differs from ref in a non-paired test. For ROC analysis, ref
is typically 0.5.


	curve_f (callable) – Function to compute the performance curve. Standard choices are:
perf_curves.roc_curve or perf_curves.recall_precision_curve.


	x_grid (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_grid,)) – Grid of points to evaluate curve in results. If None, defaults to
linear grid on [0,1].


	n_boot (int [https://docs.python.org/3/library/functions.html#int]) – Number of bootstrap iterations to perform.


	pairwise_CI (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, compute error bars on summary - summary_ref instead of
just the summary. This typically results in smaller error bars.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct error bar.






	Returns

	
	summary (tuple of floats, shape (3,)) – Tuple containing (mu, EB, pval), where mu is the best estimate on the
summary statistic of the curve, EB is the error bar, and pval is the
p-value from the two-sided boot strap significance test that its value
is the same as the reference summary value (from either
log_pred_prob_ref or default_summary_ref).


	curve (DataFrame, shape (n_grid, 4)) – DataFrame containing four columns: x_grid, the curve value, the lower
end of confidence envelope, and the upper end of the confidence
envelope.















	
mlpaper.classification.curve_summary_table(log_pred_prob_table, y, curve_dict, ref_method, x_grid=None, n_boot=1000, pairwise_CI=False, confidence=0.95)

	Build table with mean and error bars of curve summaries from a table of
probalistic predictions.


	Parameters

	
	log_pred_prob_table (DataFrame, shape (n_samples, n_methods * n_labels)) – DataFrame with predictive distributions. Each row is a data point.
The columns should be hierarchical index that is the cartesian product
of methods x labels. For exampe, log_pred_prob_table.loc[5, 'foo']
is the categorical distribution (in log scale) prediction that method
foo places on y[5].


	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – True labels for each classication data point. Must be of same length as
DataFrame log_pred_prob_table.


	curve_dict (dict of str to callable) – Dictionary mapping curve name to performance curve. Standard choices:
perf_curves.roc_curve or perf_curves.recall_precision_curve.


	ref_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of method that is used as reference point in paired statistical
tests. This is usually some some of baseline method. ref_method must
be found in the 1st level of the columns of log_pred_prob_table.


	x_grid (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_grid,)) – Grid of points to evaluate curve in results. If None, defaults to
linear grid on [0,1].


	n_boot (int [https://docs.python.org/3/library/functions.html#int]) – Number of bootstrap iterations to perform.


	pairwise_CI (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, compute error bars on summary - summary_ref instead of
just the summary. This typically results in smaller error bars.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct error bar.






	Returns

	
	curve_tbl (DataFrame, shape (n_methods, n_metrics * 3)) – DataFrame with curve summary of each method according to each curve.
The rows are the methods. The columns are a hierarchical index that is
the cartesian product of curve x (summary, error bar, p-value).
That is, curve_tbl.loc['foo', 'bar'] is a pandas series with
(summary of bar curve on foo, corresponding error bar, statistical sig)
The statistical significance is a p-value from a two-sided hypothesis
test on the hypothesis H0 that foo has the same curve summary as the
reference method ref_method.


	curve_dump (dict of (str, str) to DataFrame of shape (n_grid, 4)) – Each key is a pair of (method name, curve name) with the value being
a pandas dataframe with the performance curve, which has four columns:
x_grid, the curve value, the lower end of confidence envelope,
and the upper end of the confidence envelope.















	
mlpaper.classification.get_pred_log_prob(X_train, y_train, X_test, n_labels, methods, min_log_prob=-inf, verbose=False, checkpointdir=None)

	Get the predictive probability tables for each test point on a
collection of classification methods.


	Parameters

	
	X_train (ndarray, shape (n_train, n_features)) – Training set 2d feature array for classifiers. Each row is an
indepedent data point and each column is a feature.


	y_train (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_train,)) – Training set 1d array of truth labels for classifiers. Must be of same
length as X_train. Values must be in range [0, n_labels) or bool.


	X_test (ndarray, shape (n_test, n_features)) – Test set 2d feature array for classifiers. Each row is an indepedent
data point and each column is a feature.


	n_labels (int [https://docs.python.org/3/library/functions.html#int]) – Number of labels, must be >= 1. This is not infered from y because
some labels may not be found in small data chunks.


	methods (dict of str to sklearn estimator) – Dictionary mapping method name (str) to object that performs training
and test. Object must follow the interface of sklearn estimators, that
is it has a fit() method and either a predict_log_proba() or
predict_proba() method.


	min_log_prob (float [https://docs.python.org/3/library/functions.html#float]) – Minimum value to floor the predictive log probabilities (while still
normalizing). Must be < 0. Useful to prevent inf log loss penalties.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, display which method being trained.


	checkpointdir (str [https://docs.python.org/3/library/stdtypes.html#str] (directory)) – If provided, stores checkpoint results using joblib for the train/test
in case process interrupted. If None, no checkpointing is done.






	Returns

	log_pred_prob_table – DataFrame with predictive distributions. Each row is a data point.
The columns should be hierarchical index that is the cartesian product
of methods x labels. For exampe, log_pred_prob_table.loc[5, 'foo']
is the categorical distribution (in log scale) prediction that method
foo places on y[5].



	Return type

	DataFrame, shape (n_samples, n_methods * n_labels)





Notes

If a train/test operation is loaded from a checkpoint file, the estimator
object in methods will not be in a fit state.






	
mlpaper.classification.hard_loss(y, log_pred_prob, loss_mat=None)

	Loss function for making classification decisions from a loss matrix.

This function both computes the optimal action under the predictive
distribution and the loss matrix, and then scores that decision using the
loss matrix.


	Parameters

	
	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – True labels for each classication data point.


	log_pred_prob (ndarray, shape (n_samples, n_labels)) – Array of shape (len(y), n_labels). Each row corresponds to a
categorical distribution with normalized probabilities in log scale.
Therefore, the number of columns must be at least 1.


	loss_mat (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_labels, n_actions)) – Loss matrix to use for making decisions of size
(n_labels, n_actions). The loss of taking action a when the true
outcome (label) is y is found in loss_mat[y, a]. If None,
1 - identity matrix is used to obtain the 0-1 loss function.






	Returns

	loss – Array of the resulting loss for the predictions on each point in y.



	Return type

	ndarray, shape (n_samples,)










	
mlpaper.classification.hard_loss_decision(log_pred_prob, loss_mat)

	Make Bayes’ optimal action according to predictive probability
distribution and loss matrix.


	Parameters

	
	log_pred_prob (ndarray, shape (n_samples, n_labels)) – Array of shape (len(y), n_labels). Each row corresponds to a
categorical distribution with normalized probabilities in log scale.
Therefore, the number of columns must be at least 1.


	loss_mat (ndarray, shape (n_labels, n_actions)) – Loss matrix to use for making decisions of size
(n_labels, n_actions). The loss of taking action a when the true
outcome (label) is y is found in loss_mat[y, a].






	Returns

	action – Array of resulting Bayes’ optimal action for each data point.



	Return type

	ndarray of type int, shape (n_samples,)










	
mlpaper.classification.just_benchmark(X_train, y_train, X_test, y_test, n_labels, methods, loss_dict, curve_dict, ref_method, min_pred_log_prob=-inf, pairwise_CI=False, method_EB='t', limits={})

	Simplest one-call interface to this package. Just pass it data and
method objects and a performance summary DataFrame is returned.


	Parameters

	
	X_train (ndarray, shape (n_train, n_features)) – Training set 2d feature array for classifiers. Each row is an
indepedent data point and each column is a feature.


	y_train (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_train,)) – Training set 1d array of truth labels for classifiers. Must be of same
length as X_train. Values must be in range [0, n_labels) or bool.


	X_test (ndarray, shape (n_test, n_features)) – Test set 2d feature array for classifiers. Each row is an indepedent
data point and each column is a feature.


	y_test (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_test,)) – Test set 1d array of truth labels for classifiers. Must be of same
length as X_test. Values must be in range [0, n_labels) or bool.


	n_labels (int [https://docs.python.org/3/library/functions.html#int]) – Number of labels, must be >= 1. This is not infered from y because
some labels may not be found in small data chunks.


	methods (dict of str to sklearn estimator) – Dictionary mapping method name (str) to object that performs training
and test. Object must follow the interface of sklearn estimators, that
is it has a fit() method and either a predict_log_proba() or
predict_proba() method.


	loss_dict (dict of str to callable) – Dictionary mapping loss function name to function that computes loss,
e.g., log_loss, brier_loss, …


	curve_dict (dict of str to callable) – Dictionary mapping curve name to performance curve. Standard choices:
perf_curves.roc_curve or perf_curves.recall_precision_curve.


	ref_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of method that is used as reference point in paired statistical
tests. This is usually some some of baseline method. ref_method must
be found in methods dictionary.


	min_log_prob (float [https://docs.python.org/3/library/functions.html#float]) – Minimum value to floor the predictive log probabilities (while still
normalizing). Must be < 0. Useful to prevent inf log loss penalties.


	pairwise_CI (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, compute error bars on the mean of loss - loss_ref instead
of just the mean of loss. This typically gives smaller error bars.


	method_EB ({'t', 'bernstein', 'boot'}) – Method to use for building error bar.


	limits (dict of str to (float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])) – Dictionary mapping metric name to tuple with (lower, upper) which are
the theoretical limits on the mean loss. For instance, zero-one loss
should be (0.0, 1.0). If entry missing, (-inf, inf) is used.






	Returns

	
	full_tbl (DataFrame, shape (n_methods, (n_loss + n_curve) * 3)) – DataFrame with curve/loss summary of each method according to each
curve or loss function. The rows are the methods. The columns are a
hierarchical index that is the cartesian product of
metric x (summary, error bar, p-value), where metric can be a loss or
a curve summary: full_tbl.loc['foo', 'bar'] is a pandas series
with (metric bar on foo, corresponding error bar, statistical sig)
The statistical significance is a p-value from a two-sided hypothesis
test on the hypothesis H0 that foo has the same metric as the reference
method ref_method.


	curve_dump (dict of (str, str) to DataFrame of shape (n_grid, 4)) – Each key is a pair of (method name, curve name) with the value being
a pandas dataframe with the performance curve, which has four columns:
x_grid, the curve value, the lower end of confidence envelope,
and the upper end of the confidence envelope. Only metrics from
curve_dict and not from loss_dict are found here.















	
mlpaper.classification.log_loss(y, log_pred_prob)

	Compute log loss (e.g, negative log likelihood or cross-entropy).


	Parameters

	
	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – True labels for each classication data point.


	log_pred_prob (ndarray, shape (n_samples, n_labels)) – Array of shape (len(y), n_labels). Each row corresponds to a
categorical distribution with normalized probabilities in log scale.
Therefore, the number of columns must be at least 1.






	Returns

	loss – Array of the log loss for the predictions on each data point in y.



	Return type

	ndarray, shape (n_samples,)










	
mlpaper.classification.loss_table(log_pred_prob_table, y, metrics_dict, assume_normalized=False)

	Compute loss table from table of probalistic predictions.


	Parameters

	
	log_pred_prob_table (DataFrame, shape (n_samples, n_methods * n_labels)) – DataFrame with predictive distributions. Each row is a data point.
The columns should be hierarchical index that is the cartesian product
of methods x labels. For exampe, log_pred_prob_table.loc[5, 'foo']
is the categorical distribution (in log scale) prediction that method
foo places on y[5].


	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – True labels for each classication data point. Must be of same length as
DataFrame log_pred_prob_table.


	metrics_dict (dict of str to callable) – Dictionary mapping loss function name to function that computes loss,
e.g., log_loss, brier_loss, …


	assume_normalized (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, renormalize the predictive distributions to ensure there is
no cheating. If True, skips this step for speed.






	Returns

	loss_tbl – DataFrame with loss of each method according to each loss function on
each data point. The rows are the data points in y (that is the index
matches log_pred_prob_table). The columns are a hierarchical index
that is the cartesian product of loss x method. That is, the loss of
method foo’s prediction of y[5] according to loss function bar is
stored in loss_tbl.loc[5, ('bar', 'foo')].



	Return type

	DataFrame, shape (n_samples, n_metrics * n_methods)










	
mlpaper.classification.shape_and_validate(y, log_pred_prob)

	Validate shapes and types of predictive distribution against data and
return the shape information.


	Parameters

	
	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – True labels for each classication data point.


	log_pred_prob (ndarray, shape (n_samples, n_labels)) – Array of shape (len(y), n_labels). Each row corresponds to a
categorical distribution with normalized probabilities in log scale.
Therefore, the number of columns must be at least 1.






	Returns

	
	n_samples (int) – Number of data points (length of y)


	n_labels (int) – The number of possible labels in y. Inferred from size of
log_pred_prob and not from y.










Notes

This does not check normalization.






	
mlpaper.classification.spherical_loss(y, log_pred_prob, rescale=True)

	Compute (rescaled) spherical loss.


	Parameters

	
	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – True labels for each classication data point.


	log_pred_prob (ndarray, shape (n_samples, n_labels)) – Array of shape (len(y), n_labels). Each row corresponds to a
categorical distribution with normalized probabilities in log scale.
Therefore, the number of columns must be at least 1.


	rescale (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, linearly rescales lost so perfect (P=1) predictions give 0.0
loss and a uniform prediction gives loss of 1.0. False gives the
standard spherical loss, which is the negative spherical score.






	Returns

	loss – Array of the spherical loss for the predictions on each point in y.



	Return type

	ndarray, shape (n_samples,)










	
mlpaper.classification.summary_table(log_pred_prob_table, y, loss_dict, curve_dict, ref_method, x_grid=None, n_boot=1000, pairwise_CI=False, confidence=0.95, method_EB='t', limits={})

	Build table with mean and error bars of both loss and curve summaries
from a table of probalistic predictions.


	Parameters

	
	log_pred_prob_table (DataFrame, shape (n_samples, n_methods * n_labels)) – DataFrame with predictive distributions. Each row is a data point.
The columns should be hierarchical index that is the cartesian product
of methods x labels. For exampe, log_pred_prob_table.loc[5, 'foo']
is the categorical distribution (in log scale) prediction that method
foo places on y[5].


	y (ndarray of type int or bool [https://docs.python.org/3/library/functions.html#bool], shape (n_samples,)) – True labels for each classication data point. Must be of same length as
DataFrame log_pred_prob_table.


	loss_dict (dict of str to callable) – Dictionary mapping loss function name to function that computes loss,
e.g., log_loss, brier_loss, …


	curve_dict (dict of str to callable) – Dictionary mapping curve name to performance curve. Standard choices:
perf_curves.roc_curve or perf_curves.recall_precision_curve.


	ref_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of method that is used as reference point in paired statistical
tests. This is usually some some of baseline method. ref_method must
be found in the 1st level of the columns of log_pred_prob_table.


	x_grid (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_grid,)) – Grid of points to evaluate curve in results. If None, defaults to
linear grid on [0,1].


	n_boot (int [https://docs.python.org/3/library/functions.html#int]) – Number of bootstrap iterations to perform for performance curves.


	pairwise_CI (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, compute error bars on summary - summary_ref instead of
just the summary. This typically results in smaller error bars.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct error bar.


	method_EB ({'t', 'bernstein', 'boot'}) – Method to use for building error bar.


	limits (dict of str to (float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])) – Dictionary mapping metric name to tuple with (lower, upper) which are
the theoretical limits on the mean loss. For instance, zero-one loss
should be (0.0, 1.0). If entry missing, (-inf, inf) is used.






	Returns

	
	full_tbl (DataFrame, shape (n_methods, (n_loss + n_curve) * 3)) – DataFrame with curve/loss summary of each method according to each
curve or loss function. The rows are the methods. The columns are a
hierarchical index that is the cartesian product of
metric x (summary, error bar, p-value), where metric can be a loss or
a curve summary: full_tbl.loc['foo', 'bar'] is a pandas series
with (metric bar on foo, corresponding error bar, statistical sig)
The statistical significance is a p-value from a two-sided hypothesis
test on the hypothesis H0 that foo has the same metric as the reference
method ref_method.


	curve_dump (dict of (str, str) to DataFrame of shape (n_grid, 4)) – Each key is a pair of (method name, curve name) with the value being
a pandas dataframe with the performance curve, which has four columns:
x_grid, the curve value, the lower end of confidence envelope,
and the upper end of the confidence envelope. Only metrics from
curve_dict and not from loss_dict are found here.

















Data Splitting Tools


	
mlpaper.data_splitter.build_lag_df(df, n_lags, stride=1, features=None)

	Build a lad dataframe from dataframe where the rows are ordered time
indices for a time series data set. This is useful for autoregressive
models.


	Parameters

	
	df (DataFrame, shape (n_samples, n_cols)) – Orginal dataset we want to build lag data set from.


	n_lags (int [https://docs.python.org/3/library/functions.html#int]) – Number of lags. n_lags=1 means only the original data set. Must be
>= 1.


	stride (int [https://docs.python.org/3/library/functions.html#int]) – Stride of the lags. For instance, stride=2 means only even lags.


	features (array-like, shape (n_features,)) – Subset of columns in df to include in the lags data. All columns are
retained for lag 0. For data frames containing features and targets,
the features (inputs)  can be placed in features so the targets
(outputs) are only present for lag 0. If None, use all columns.






	Returns

	df – New data frame where lags data frames have been concat’ed tegether.
The columns are a new hierarchical index with the lag at the lowest
level.



	Return type

	DataFrame, shape (n_samples, n_cols + (n_lags - 1) * n_features)





Examples

>>> data=np.random.choice(10,size=(4,3))
>>> df=pd.DataFrame(data=data,columns=['a','b','c'])
>>> ds.build_lag_df(df,3,features=['a','b'])
          a  b  c   a   b   a   b
     lag L0 L0 L0  L1  L1  L2  L2
     0    2  2  2 NaN NaN NaN NaN
     1    2  9  4   2   2 NaN NaN
     2    8  4  0   2   9   2   2
     3    3  5  6   8   4   2   9










	
mlpaper.data_splitter.index_to_series(index)

	Make a pandas series from a pandas index with the value equal to index.


	Parameters

	index (Index) – Pandas Index to make series from.



	Returns

	S – Pandas series where s[idx] = idx.



	Return type

	Series





Examples

>>> index_to_series(pd.Index([1,5,7]))
1    1
5    5
7    7
dtype: int64










	
mlpaper.data_splitter.linear_split_series(S, frac, assume_sorted=False, assume_unique=False)

	Create a binary mask to split a series into training/test based on a
linear split based on values of series. That is, the train/test divide is
based on a point that is a linear interpolation between lowest value and
highest value in the series.


	Parameters

	
	S (Series, shape (n_samples,)) – Pandas Series whose index will be used for binary mask. The linear
split is based on the series values.


	frac (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of region be between series min and series max we want to be
True. Must be in [0,1].


	assume_sorted (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, assume series is already sorted based on values. This can be
used for computational speedups.


	assume_unique (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, assume all values in series are unique. This can be
used for computational speedups.






	Returns

	train_curr – Binary mask with index matching S.



	Return type

	Series with values of type bool, shape (n_samples,)










	
mlpaper.data_splitter.ordered_split_series(S, frac, assume_sorted=False, assume_unique=False)

	Create a binary mask to split a series into training/test based on a
ordered split based on values of series. That is, indices with a lower
value get put in train and the rest go in test.


	Parameters

	
	S (Series, shape (n_samples,)) – Pandas Series whose index will be used for binary mask. The ordered
split is based on the series values.


	frac (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of elements we want to be True. Must be in [0,1].


	assume_sorted (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, assume series is already sorted based on values. This can be
used for computational speedups.


	assume_unique (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, assume all values in series are unique. This can be
used for computational speedups.






	Returns

	train_curr – Binary mask with index matching S.



	Return type

	Series with values of type bool, shape (n_samples,)










	
mlpaper.data_splitter.rand_mask(n_samples, frac)

	Make a random binary mask with a certain fraction. Rounds number of
elements up to next integer when exact fraction is not possible.


	Parameters

	
	n_samples (int [https://docs.python.org/3/library/functions.html#int]) – Length of mask.


	frac (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of elements we want to be True. Must be in [0,1].






	Returns

	L – Random binary mask.



	Return type

	ndarray of type bool, shape (n_samples,)










	
mlpaper.data_splitter.rand_subset(x, frac)

	Take random subset of array x with a certain fraction. Rounds number
of elements up to next integer when exact fraction is not possible.


	Parameters

	
	x (array-like, shape (n_samples,)) – List that we want a subset of.


	frac (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of x elements we want to keep in subset. Must be in [0,1].






	Returns

	L – Array that is subset with m_samples = ceil(frac * n_samples) samples.



	Return type

	ndarray, shape (m_samples,)










	
mlpaper.data_splitter.random_split_series(S, frac, assume_sorted=False, assume_unique=False)

	Create a binary mask to split a series into training/test based on a
random split based on values of series. That is, elements with the same
value in the series always get grouped into both train or both test.


	Parameters

	
	S (Series, shape (n_samples,)) – Pandas Series whose index will be used for binary mask. Random
splitting is based on a random parititioning of the series values.


	frac (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of elements we want to be True. Must be in [0,1].


	assume_sorted (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, assume series is already sorted based on values. This can be
used for computational speedups.


	assume_unique (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, assume all values in series are unique. This can be
used for computational speedups.






	Returns

	train_curr – Random binary mask with index matching S.



	Return type

	Series with values of type bool, shape (n_samples,)










	
mlpaper.data_splitter.split_df(df, splits={None: ('random', 0.8)}, assume_unique=(), assume_sorted=())

	Split a pandas data frame based on criteria across multiple columns.

A seperate train test split is done for each column specified as a split
column in splits. A row is added to the final training set, only if it
is placed in training by every column splits. Likewise, A row is added to
the final test set, only if it is placed in test by every column splits.
All other rows are placed in the unused data points DataFrame.


	Parameters

	
	df (DataFrame, shape (n_samples, n_features)) – DataFrame we wish to split into training and test chunks


	splits (dict of object to ({RANDOM, ORDRED, LINEAR}, float [https://docs.python.org/3/library/functions.html#float])) – Dictionary explaining how to do the split. The keys of the splits are
the columns in df we will base the split on. The constant INDEX can
be used to symbolize that the index is the desired column.
Each value is a tuple with (split type, fraction for training). The
split type can be either: random, ordered, or linear. The fraction for
training must be in [0,1]. Fraction of region be between series min and
series max we want to be True. The Fraction must be in [0,1]. If
splits is omitted, the default is to perform a 80-20 random split
based on the index.


	assume_sorted (array-like of str) – Columns that we can assume are alreay sorted by value. This can be
used for computational speedups.


	assume_unique (array-like of str) – Columns that we can assume have unique values. This can be used for
computational speedups.






	Returns

	
	df_train (DataFrame, shape (n_train, n_features)) – Subset of df placed in training set.


	df_test (DataFrame, shape (n_test, n_features)) – Subset of df placed in test set.


	df_unused (DataFrame, shape (n_unused, n_features)) – Subset of df not in training or test. This will be empty if only a
single column is ued in splits.

















Core Routines


	
mlpaper.mlpaper.bernstein_EB(x, lower, upper, confidence=0.95)

	Get Bernstein bound based error bars on mean of x. This error bar
makes no distributional or central limit theorem assumption on x.


	Parameters

	
	x (array-like, shape (n_samples,)) – Data points to estimate mean. Must not be empty or contain NaNs.


	lower (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical lower limit on unknown mean. For instance,
for mean zero-one loss, lower=0.


	upper (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical upper limit on unknown mean. For instance,
for mean zero-one loss, upper=1.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct confidence interval
from t statistic.






	Returns

	EB – Size of error bar on mean (>= 0). The confidence interval is
[mean(x) - EB, mean(x) + EB]. EB = upper - lower is inf when
len(x) = 0.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]





Notes

This does not do clipping of to trivial error bars, i.e., EB could be
larger than upper - lower. However, clip_EB can be called to enforce
trivial error bar limits.

References

Audibert, Jean-Yves, Remi Munos, and Csaba Szepesvari.
“Exploration-exploitation tradeoff using variance estimates in multi-armed
bandits.” Theoretical Computer Science 410.19 (2009): 1876-1902.






	
mlpaper.mlpaper.bernstein_test(x, lower, upper)

	Perform Bernstein bound-based test to test if the values in x are
sampled from a distribution with a zero mean. This test makes no
distributional or central limit theorem assumption on x.

As a result the bound may be loose and the p-value will not be sampled from
a uniform distribution under H0 (E[x] = 0), but rather be skewed larger
than uniform.


	Parameters

	
	x (array-like, shape (n_samples,)) – array of data points to test.


	lower (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical lower limit on unknown mean. For instance,
for mean zero-one loss, lower=0.


	upper (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical upper limit on unknown mean. For instance,
for mean zero-one loss, upper=1.






	Returns

	pval – p-value (in [0,1]) from t-test on x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
mlpaper.mlpaper.boot_EB(x, confidence=0.95, n_boot=1000)

	Get bootstrap bound based error bars on mean of x.


	Parameters

	
	x (array-like, shape (n_samples,)) – Data points to estimate mean. Must not be empty or contain NaNs.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct confidence interval
from t statistic.


	n_boot (int [https://docs.python.org/3/library/functions.html#int]) – Number of bootstrap iterations to perform.






	Returns

	EB – Size of error bar on mean (>= 0). The confidence interval is
[mean(x) - EB, mean(x) + EB]. EB is inf when len(x) <= 1.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
mlpaper.mlpaper.boot_test(x, n_boot=1000)

	Perform a bootstrap-based test to test if the values in x are sampled
from a distribution with a zero mean.


	Parameters

	
	x (array-like, shape (n_samples,)) – array of data points to test.


	n_boot (int [https://docs.python.org/3/library/functions.html#int]) – Number of bootstrap iterations to perform.






	Returns

	pval – p-value (in [0,1]) from t-test on x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
mlpaper.mlpaper.clip_EB(mu, EB, lower=-inf, upper=inf, min_EB=0.0)

	Clip error bars to both a minimum uncertainty level and a maximum level
determined by trivial error bars from the a prior known limits of the
unknown parameter theta. Similar to np.clip, but for error bars.


	Parameters

	
	mu (float [https://docs.python.org/3/library/functions.html#float]) – Point estimate of unknown parameter theta around which error bars are
based.


	EB (float [https://docs.python.org/3/library/functions.html#float]) – Size of error bar around mu (EB > 0). The confidence interval on
theta is [mu - EB, mu + EB].


	lower (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical lower limit on unknown parameter theta.
For instance, for mean zero-one loss, lower=0.


	upper (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical upper limit on unknown parameter theta.
For instance, for mean zero-one loss, upper=1.


	min_EB (float [https://docs.python.org/3/library/functions.html#float]) – Minimum size beleivable size of error bar. Typically, leave
min_EB=0 for simplicity.






	Returns

	EB – Error bar after possible clipping.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
mlpaper.mlpaper.get_mean_EB_test(x, confidence=0.95, min_EB=0.0, lower=-inf, upper=inf, method='t')

	Get mean loss and estimated error bar. Also, perform a statistical test
to determine if the values in x are sampled from a distribution with a
zero mean.


	Parameters

	
	x (ndarray, shape (n_samples,)) – Array of independent observations.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct error bar.


	min_EB (float [https://docs.python.org/3/library/functions.html#float]) – Minimum size of resulting error bar regardless of the data in x.


	lower (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical lower limit on unknown mean of x. For
instance, for mean zero-one loss, lower=0.


	upper (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical upper limit on unknown mean of x. For
instance, for mean zero-one loss, upper=1.


	method ({'t', 'bernstein', 'boot'}) – Method to use for building error bar.






	Returns

	
	mu (float) – Estimated mean of x.


	EB (float) – Size of error bar on mean of x (EB > 0). The confidence interval
is [mu - EB, mu + EB].


	pval (float) – p-value (in [0,1]) from statistical test on x.















	
mlpaper.mlpaper.get_mean_and_EB(x, confidence=0.95, min_EB=0.0, lower=-inf, upper=inf, method='t')

	Get mean loss and estimated error bar.


	Parameters

	
	x (ndarray, shape (n_samples,)) – Array of independent observations.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct error bar.


	min_EB (float [https://docs.python.org/3/library/functions.html#float]) – Minimum size of resulting error bar regardless of the data in x.


	lower (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical lower limit on unknown mean of x. For
instance, for mean zero-one loss, lower=0.


	upper (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical upper limit on unknown mean of x. For
instance, for mean zero-one loss, upper=1.


	method ({'t', 'bernstein', 'boot'}) – Method to use for building error bar.






	Returns

	
	mu (float) – Estimated mean of x.


	EB (float) – Size of error bar on mean of x (EB > 0). The confidence interval
is [mu - EB, mu + EB].















	
mlpaper.mlpaper.get_test(x, lower=-inf, upper=inf, method='t')

	Perform a statistical test to determine if the values in x are sampled
from a distribution with a zero mean.


	Parameters

	
	x (ndarray, shape (n_samples,)) – Array of independent observations.


	lower (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical lower limit on unknown mean of x. For
instance, for mean zero-one loss, lower=0.


	upper (float [https://docs.python.org/3/library/functions.html#float]) – A priori known theoretical upper limit on unknown mean of x. For
instance, for mean zero-one loss, upper=1.


	method ({'t', 'bernstein', 'boot'}) – Method to use statistical test.






	Returns

	pval – p-value (in [0,1]) from statistical test on x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
mlpaper.mlpaper.loss_summary_table(loss_table, ref_method, pairwise_CI=False, confidence=0.95, method_EB='t', limits={})

	Build table with mean and error bar summaries from a loss table that
contains losses on a per data point basis.


	Parameters

	
	loss_tbl (DataFrame, shape (n_samples, n_metrics * n_methods)) – DataFrame with loss of each method according to each loss function on
each data point. The rows are the data points in y (that is the index
matches log_pred_prob_table). The columns are a hierarchical index
that is the cartesian product of loss x method. That is, the loss of
method foo’s prediction of y[5] according to loss function bar is
stored in loss_tbl.loc[5, ('bar', 'foo')].


	ref_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of method that is used as reference point in paired statistical
tests. This is usually some some of baseline method. ref_method must
be found in the 2nd level of the columns of loss_tbl.


	pairwise_CI (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, compute error bars on the mean of loss - loss_ref instead
of just the mean of loss. This typically gives smaller error bars.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct error bar.


	method_EB ({'t', 'bernstein', 'boot'}) – Method to use for building error bar.


	limits (dict of str to (float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])) – Dictionary mapping metric name to tuple with (lower, upper) which are
the theoretical limits on the mean loss. For instance, zero-one loss
should be (0.0, 1.0). If entry missing, (-inf, inf) is used.






	Returns

	perf_tbl – DataFrame with mean loss of each method according to each loss
function. The rows are the methods. The columns are a hierarchical
index that is the cartesian product of
loss x (mean, error bar, p-value). That is,
perf_tbl.loc['foo', 'bar'] is a pandas series with
(mean loss of foo on bar, corresponding error bar, statistical sig)
The statistical significance is a p-value from a two-sided hypothesis
test on the hypothesis H0 that foo has the same mean loss as the
reference method ref_method.



	Return type

	DataFrame, shape (n_methods, n_metrics * 3)










	
mlpaper.mlpaper.t_EB(x, confidence=0.95)

	Get t statistic based error bars on mean of x.


	Parameters

	
	x (array-like, shape (n_samples,)) – Data points to estimate mean. Must not be empty or contain NaNs.


	confidence (float [https://docs.python.org/3/library/functions.html#float]) – Confidence probability (in (0, 1)) to construct confidence interval
from t statistic.






	Returns

	EB – Size of error bar on mean (>= 0). The confidence interval is
[mean(x) - EB, mean(x) + EB]. EB is inf when len(x) <= 1.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
mlpaper.mlpaper.t_test(x)

	Perform a standard t-test to test if the values in x are sampled from
a distribution with a zero mean.


	Parameters

	x (array-like, shape (n_samples,)) – array of data points to test.



	Returns

	pval – p-value (in [0,1]) from t-test on x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]












Performance Curves


	
mlpaper.perf_curves.prg_curve(y_true, y_score, sample_weight=None)

	Compute precision recall gain curve with optional sample weight matrix.
Similar to recall_precision_curve.


	Parameters

	
	y_true (ndarray of type bool, shape (n_samples,)) – True targets of binary classification. Cannot be empty.


	y_score (ndarray, shape (n_samples,)) – Estimated probabilities or decision function. Must be finite.


	sample_weight (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_samples, n_boot)) – Sample weights. If None, all weights are one.






	Returns

	
	recall_gain (ndarray, shape (n_boot, n_thresholds)) – The recall_gain. Each column is computed indepently by each column in
sample_weight.


	prec_gain (ndarray, shape (n_boot, n_thresholds)) – The precision gain. Each column is computed indepently by each column
in sample_weight.


	thresholds (ndarray, shape (n_thresholds,)) – Decreasing score values.















	
mlpaper.perf_curves.recall_precision_curve(y_true, y_score, sample_weight=None)

	Compute recall precision curve with optional sample weight matrix. This
has intentionally been named recall-precision rather than the traditional
precision-recall.

Based on sklearn.metrics.ranking.precision_recall_curve except that it
supports a matrix a different sample weights sample_weight. The name
order has been switched to recall_precision_curve to be consistent with
roc_curve because recall is typically placed on the x-axis. It computes
the results indenpedently for each column of sample_weight in a
vectorized way. This is useful when doing a fast boot strap analysis. It is
also more robust to corner cases such as when only a single class is
present in y_true.


	Parameters

	
	y_true (ndarray of type bool, shape (n_samples,)) – True targets of binary classification. Cannot be empty.


	y_score (ndarray, shape (n_samples,)) – Estimated probabilities or decision function. Must be finite.


	sample_weight (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_samples, n_boot)) – Sample weights. If None, all weights are one.






	Returns

	
	recall (ndarray, shape (n_boot, n_thresholds)) – The recall. Each column is computed indepently by each column in
sample_weight.


	precision (ndarray, shape (n_boot, n_thresholds)) – The precision. Each column is computed indepently by each column in
sample_weight.


	thresholds (ndarray, shape (n_thresholds,)) – Decreasing score values.















	
mlpaper.perf_curves.roc_curve(y_true, y_score, sample_weight=None)

	Compute ROC curve with optional sample weight matrix.

Based on sklearn.metrics.ranking.roc_curve except that it supports a
matrix a different sample weights sample_weight. It computes
the results indenpedently for each column of sample_weight in a
vectorized way. This is useful when doing a fast boot strap analysis. It is
also more robust to corner cases such as when only a single class is
present in y_true.


	Parameters

	
	y_true (ndarray of type bool, shape (n_samples,)) – True targets of binary classification. Cannot be empty.


	y_score (ndarray, shape (n_samples,)) – Estimated probabilities or decision function. Must be finite.


	sample_weight (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_samples, n_boot)) – Sample weights. If None, all weights are one.






	Returns

	
	fpr (ndarray, shape (n_boot, n_thresholds)) – The false positive rates. Each column is computed indepently by each
column in sample_weight.


	tpr (ndarray, shape (n_boot, n_thresholds)) – The false positive rates. Each column is computed indepently by each
column in sample_weight.


	thresholds (ndarray, shape (n_thresholds,)) – Decreasing score values.

















Benchmarking for Regression


	
class mlpaper.regression.JustNoise

	Class version of iid predictor compatible with sklearn interface. Same
as sklearn.dummy.DummyRegressor(strategy='mean') but also keeps track
of std to be able to accept return_std=True.






	
mlpaper.regression.abs_loss(y, mu, std)

	Compute MAE of predictions vs true targets.


	Parameters

	
	y (ndarray, shape (n_samples,)) – True targets for each regression data point. Typically of type float.


	mu (ndarray, shape (n_samples,)) – Predictive mean for each regression data point. Typically of type
float. Must be of same shape as y.


	std (ndarray, shape (n_samples,)) – Predictive standard deviation for each regression data point. Typically
of type float. Must be positive and of same shape as y. Ignored in
this function.






	Returns

	loss – Absolute error of target vs prediction. Same shape as y.



	Return type

	ndarray, shape (n_samples,)










	
mlpaper.regression.get_gauss_pred(X_train, y_train, X_test, methods, min_std=0.0, verbose=False, checkpointdir=None)

	Get the Gaussian prediction tables for each test point on a collection
of regression methods.


	Parameters

	
	X_train (ndarray, shape (n_train, n_features)) – Training set 2d feature array for classifiers. Each row is an
indepedent data point and each column is a feature.


	y_train (ndarray, shape (n_train,)) – True training targets for each regression data point. Typically of type
float. Must be of same length as X_train.


	X_test (ndarray, shape (n_test, n_features)) – Test set 2d feature array for classifiers. Each row is an indepedent
data point and each column is a feature.


	methods (dict of str to sklearn estimator) – Dictionary mapping method name (str) to object that performs training
and test. Object must follow the interface of sklearn estimators, that
is, it has a fit() method and a predict() method that accepts
the argument return_std=True.


	min_std (float [https://docs.python.org/3/library/functions.html#float]) – Minimum value to floor the predictive standard deviation. Must be >= 0.
Useful to prevent inf log loss penalties.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, display which method being trained.


	checkpointdir (str [https://docs.python.org/3/library/stdtypes.html#str] (directory)) – If provided, stores checkpoint results using joblib for the train/test
in case process interrupted. If None, no checkpointing is done.






	Returns

	pred_tbl – DataFrame with predictive distributions. Each row is a data point.
The columns should be hierarchical index that is the cartesian product
of methods x moments. For exampe, log_pred_prob_table.loc[5, 'foo']
is a pandas series with (mean, std deviation) prediction that method
foo places on y[5].



	Return type

	DataFrame, shape (n_samples, n_methods * 2)





Notes

If a train/test operation is loaded from a checkpoint file, the estimator
object in methods will not be in a fit state.






	
mlpaper.regression.just_benchmark(X_train, y_train, X_test, y_test, methods, loss_dict, ref_method, min_std=0.0, pairwise_CI=False, method_EB='t', limits={})

	Simplest one-call interface to this package. Just pass it data and
method objects and a performance summary DataFrame is returned.


	Parameters

	
	X_train (ndarray, shape (n_train, n_features)) – Training set 2d feature array for classifiers. Each row is an
indepedent data point and each column is a feature.


	y_train (ndarray, shape (n_train,)) – True training targets for each regression data point. Typically of type
float. Must be of same length as X_train.


	X_test (ndarray, shape (n_test, n_features)) – Test set 2d feature array for classifiers. Each row is an indepedent
data point and each column is a feature.


	y_test (ndarray, shape (n_test,)) – True test targets for each regression data point. Typically of type
float. Cannot be empty. Must be of same length as X_test.


	methods (dict of str to sklearn estimator) – Dictionary mapping method name (str) to object that performs training
and test. Object must follow the interface of sklearn estimators, that
is, it has a fit() method and a predict() method that accepts
the argument return_std=True.


	loss_dict (dict of str to callable) – Dictionary mapping loss function name to function that computes loss,
e.g., log_loss, square_loss, …


	ref_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of method that is used as reference point in paired statistical
tests. This is usually some some of baseline method. ref_method must
be found in methods dictionary.


	min_std (float [https://docs.python.org/3/library/functions.html#float]) – Minimum value to floor the predictive standard deviation. Must be >= 0.
Useful to prevent inf log loss penalties.


	pairwise_CI (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, compute error bars on the mean of loss - loss_ref instead
of just the mean of loss. This typically gives smaller error bars.


	method_EB ({'t', 'bernstein', 'boot'}) – Method to use for building error bar.


	limits (dict of str to (float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])) – Dictionary mapping metric name to tuple with (lower, upper) which are
the theoretical limits on the mean loss. For instance, square loss on a
bounded y domain of (-1.0,1.0) would give limits of (0.0, 4.0).
If entry missing, (-inf, inf) is used.






	Returns

	loss_summary – DataFrame with mean loss of each method according to each loss
function. The rows are the methods. The columns are a hierarchical
index that is the cartesian product of
loss x (mean, error bar, p-value). That is,
perf_tbl.loc['foo', 'bar'] is a pandas series with
(mean loss of foo on bar, corresponding error bar, statistical sig)
The statistical significance is a p-value from a two-sided hypothesis
test on the hypothesis H0 that foo has the same mean loss as the
reference method ref_method.



	Return type

	DataFrame, shape (n_methods, n_metrics * 3)










	
mlpaper.regression.log_loss(y, mu, std)

	Compute log loss of Gaussian predictive distribution on target y.


	Parameters

	
	y (ndarray, shape (n_samples,)) – True targets for each regression data point. Typically of type float.


	mu (ndarray, shape (n_samples,)) – Predictive mean for each regression data point. Typically of type
float. Must be of same shape as y.


	std (ndarray, shape (n_samples,)) – Predictive standard deviation for each regression data point. Typically
of type float. Must be positive and of same shape as y.






	Returns

	loss – Log loss of Gaussian predictive distribution on target y. Same shape
as y.



	Return type

	ndarray, shape (n_samples,)










	
mlpaper.regression.loss_table(pred_tbl, y, metrics_dict)

	Compute loss table from table of Gaussian predictions.


	Parameters

	
	pred_tbl (DataFrame, shape (n_samples, n_methods * 2)) – DataFrame with predictive distributions. Each row is a data point.
The columns should be hierarchical index that is the cartesian product
of methods x moments. For exampe, log_pred_prob_table.loc[5, 'foo']
is a pandas series with (mean, std deviation) prediction that method
foo places on y[5]. Cannot be empty.


	y (ndarray, shape (n_samples,)) – True targets for each regression data point. Typically of type float.


	metrics_dict (dict of str to callable) – Dictionary mapping loss function name to function that computes loss,
e.g., log_loss, square_loss, …






	Returns

	loss_tbl – DataFrame with loss of each method according to each loss function on
each data point. The rows are the data points in y (that is the index
matches pred_tbl). The columns are a hierarchical index that is the
cartesian product of loss x method. That is, the loss of method foo’s
prediction of y[5] according to loss function bar is stored in
loss_tbl.loc[5, ('bar', 'foo')].



	Return type

	DataFrame, shape (n_samples, n_metrics * n_methods)










	
mlpaper.regression.shape_and_validate(y, mu, std)

	Validate shapes and types of predictive distribution against data and
return the shape information.


	Parameters

	
	y (ndarray, shape (n_samples,)) – True targets for each regression data point. Typically of type float.


	mu (ndarray, shape (n_samples,)) – Predictive mean for each regression data point. Typically of type
float. Must be of same shape as y.


	std (ndarray, shape (n_samples,)) – Predictive standard deviation for each regression data point. Typically
of type float. Must be positive and of same shape as y.






	Returns

	n_samples – Number of data points (length of y)



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
mlpaper.regression.square_loss(y, mu, std)

	Compute MSE of predictions vs true targets.


	Parameters

	
	y (ndarray, shape (n_samples,)) – True targets for each regression data point. Typically of type float.


	mu (ndarray, shape (n_samples,)) – Predictive mean for each regression data point. Typically of type
float. Must be of same shape as y.


	std (ndarray, shape (n_samples,)) – Predictive standard deviation for each regression data point. Typically
of type float. Must be positive and of same shape as y. Ignored in
this function.






	Returns

	loss – Square error of target vs prediction. Same shape as y.



	Return type

	ndarray, shape (n_samples,)












Print with Advanced Scientific Formatting Tools


	
mlpaper.sciprint.adjust_headers(headers, shifts, unit_dict, use_prefix=True, use_tex=False)

	Adjust the headers of a table generated by format_table to reflect the
shift.


	Parameters

	
	headers (array-like of str, shape (n_metrics,)) – List of metrics to adjust


	shifts (dict of str to int) – The used shift in log10 scale for each metric.


	unit_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict] or str to str) – Dictionary from metric name to associated unit symbol. Treat as
unitless if entry is missing for a metric.


	use_prefix (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, attempt to apply SI prefix to unit symbol for shift.


	use_tex (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, adjust headers with TeX based formatting.






	Returns

	headers – New header strings in same order as headers.



	Return type

	list of str, shape (n_metrics,)





Notes

Requiring list headers is not redundant with dictionary shifts which
contains the same entries as keys because we care about the order. Standard
dictionaries in Python do not guarantee order.






	
mlpaper.sciprint.all_same(L)

	Check if all elements in list are equal.


	Parameters

	L (array-like, shape (n,)) – List of objects of any type.



	Returns

	y – True if all elements are equal.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
mlpaper.sciprint.as_tuple_chk(x_dec)

	Convert Decimal to DecimalTuple and check finite.


	Parameters

	x_dec (Decimal) – Input value in decimal.



	Returns

	x_tup – Input converted to DecimalTuple.



	Return type

	DecimalTuple










	
mlpaper.sciprint.ceil_mod(x, mod)

	Do ceil in base mod instead of to nearest integer.


	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – Number to ceil.


	mod (int [https://docs.python.org/3/library/functions.html#int]) – Positive number (x >= 1) to use as modulus.






	Returns

	y – Smallest number y >= x such that y % mod = 0.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
mlpaper.sciprint.create_decimal(x, digits, rounding='ROUND_HALF_UP')

	Create Decimal object from float with desired significant figures.


	Parameters

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – Value to convert to decimal.


	digits (int [https://docs.python.org/3/library/functions.html#int]) – Number of signficant figures to keep in x, must be >= 1.


	rounding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Rounding mode, must be one of the rounding modes accepted as in
decimal.Context.rounding.






	Returns

	y – Conversion of x to Decimal.



	Return type

	Decimal










	
mlpaper.sciprint.decimal_1ek(k, signed=False)

	Returns 10 ** k or -1 * 10 ** k in Decimal.


	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – exponent for value.


	signed (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return negative.






	Returns

	y – 10 ** k or -1 * 10 ** k in Decimal.



	Return type

	Decimal










	
mlpaper.sciprint.decimal_all_finite(x_dec_list)

	Check if all elements in list of decimals are finite.


	Parameters

	x_dec_list (iterable of Decimal) – List of decimal objects.



	Returns

	y – True if all elements are finite.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
mlpaper.sciprint.decimal_eps(x_dec)

	Analog of eps (np.spacing) for Decimal objects.


	Parameters

	x_dec (Decimal) – Input value in decimal.



	Returns

	y – Smallest value that can be added to x_dec.



	Return type

	Decimal










	
mlpaper.sciprint.decimal_from_tuple(signed, digits, expo)

	Build Decimal objects from components of decimal tuple.


	Parameters

	
	signed (bool [https://docs.python.org/3/library/functions.html#bool]) – True for negative values.


	digits (iterable of ints) – digits of value each in [0,10).


	expo (int [https://docs.python.org/3/library/functions.html#int] or {'F', 'n', 'N'}) – exponent of decimal.






	Returns

	y – corresponding decimal object.



	Return type

	Decimal










	
mlpaper.sciprint.decimal_to_dot(x_dec)

	Test if Decimal value has enough precision that it is defined to dot,
i.e., its eps is <= 1.


	Parameters

	x_dec (Decimal) – Input value in decimal.



	Returns

	y – True if x_dec defined to dot.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]





Examples

>>> decimal_to_dot(Decimal('1.23E+1'))
True
>>> decimal_to_dot(Decimal('1.23E+2'))
True
>>> decimal_to_dot(Decimal('1.23E+3'))
False










	
mlpaper.sciprint.decimalize(perf_tbl, err_digits=2, pval_digits=4, default_digits=5, EB_limit={})

	Convert a performance table from float entries to Decimal.


	Parameters

	
	perf_tbl (DataFrame, shape (n_methods, n_metrics * 3)) – DataFrame with curve/loss summary of each method according to each
curve or loss function. The rows are the methods. The columns are a
hierarchical index that is the cartesian product of
metric x (summary, error bar, p-value), where metric can be a loss or
a curve summary: full_tbl.loc['foo', 'bar'] is a pandas series
with (metric bar on foo, corresponding error bar, statistical sig).


	err_digits (int [https://docs.python.org/3/library/functions.html#int]) – Number of digits of error to keep for rounding in Decimal conversion:
1.2345 +/- 0.0671 is rounded to 1.235 +/- 0.068 when err_digits=2.
The error is always rounded up, and the summary is rounded up on half.
Must be >= 1.


	pval_digits (int [https://docs.python.org/3/library/functions.html#int]) – Precision to keep in p-value when rounding to decimal:
0.001234 is rounded to 0.0013 when pval_digits=4. The p-value is
always rounded up. Must be >= 1


	default_digits (int [https://docs.python.org/3/library/functions.html#int]) – Number of digits to keep in estimate when error bar is 0, inf, nan, or
beyond the error bar limit. Must be >= 1.


	EB_limit (dict of str to int) – Error bar limit in log10 scale for each column. If the
error > 10 ** EB_limit then the error is treated as if
error = inf since it is too large to be useful. This dictionary is
optional. Can be positive or negative integer since in log10 scale.






	Returns

	perf_tbl_dec – DataFrame with same rows and columns as perf_tbl, however the entires
are now Decimal objects that have been rounded in accordance with the
input options.



	Return type

	DataFrame, shape (n_methods, n_metrics * 3)










	
mlpaper.sciprint.digit_str(x_dec)

	Decimal to string with only digits (no decimal point, exponent, sign).


	Parameters

	x_dec (Decimal) – Input value in Decimal.



	Returns

	y – String of digits in x_dec.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
mlpaper.sciprint.ensure_tuple_of_ints(L)

	This could possibly be done more efficiently with tolist if L is
np or pd array, but will stick with this simple solution for now.






	
mlpaper.sciprint.find_last_dig(num_str)

	Find index in string of number (possibly) with error bars immediately
before the decimal point.


	Parameters

	num_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – String representation of a float, possibly with error bars in parens.



	Returns

	pos – String index of digit before decimal point.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]





Examples

>>> find_last_dig('5.555')
0
>>> find_last_dig('-5.555')
1
>>> find_last_dig('-567.555')
3
>>> find_last_dig('-567.555(45)')
3
>>> find_last_dig('-567(45)')
3










	
mlpaper.sciprint.find_shift(mean_list, err_list, shift_mod=1)

	Find optimal decimal point shift to display the numbers in mean_list
for display compactness.

Finds optimal shift of Decimal numbers with potentially varying significant
figures and varying magnitudes to limit the length of the longest resulting
string of all the numbers. This is to limit the length of the resulting
column which is determined by the longest number. This function assumes the
number will not be displayed in a fixed width font and hence the decimal
point only adds a neglible width. Assumes all clipped and non-finite values
have been removed from list.

Attempts to fulful three constraints:
1) All estimates displayed to dot after shifting
2) At least one estimate is >= 1 after shift to avoid space waste with 0s.
3) shift % shift_mod == 0
If not all 3 are possible then requirement 2 is violated.


	Parameters

	
	mean_list (array-like of Decimal, shape (n,)) – List of Decimal estimates to format. Assumes all non-finite and
clipped values are already removed.


	err_list (array-like of Decimal, shape (n,)) – List of Decimal error bars. Must be of same length as mean_list.


	shift_mod (int [https://docs.python.org/3/library/functions.html#int]) – Required modulus for output. This is usually 1 or 3. When an SI prefix
is desired on the shift then a modulus of 3 is used. Must be >= 1.






	Returns

	best_shift – Best shift of mean_list for compactness. This is number of digits
to move point to right, e.g. shift=3 => change 1.2345 to 1234.5



	Return type

	int [https://docs.python.org/3/library/functions.html#int]





Notes

This function is fairly inefficient and could be done implicitly, but it
shouldn’t be the bottleneck anyway for most usages.






	
mlpaper.sciprint.floor_mod(x, mod)

	Do floor in base mod instead of to nearest integer.


	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – Number to floor.


	mod (int [https://docs.python.org/3/library/functions.html#int]) – Positive number (x >= 1) to use as modulus.






	Returns

	y – Largest number y <= x such that y % mod = 0.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
mlpaper.sciprint.format_table(perf_tbl_dec, shift_mod=None, pad=True, crap_limit_max={}, crap_limit_min={}, non_finite_fmt={})

	Format a performance table that is already in decimal form to one that
is formatted with entries in string type.


	Parameters

	
	perf_tbl_dec (DataFrame, shape (n_methods, n_metrics * 3)) – DataFrame with curve/loss summary of each method according to each
curve or loss function. The rows are the methods. The columns are a
hierarchical index that is the cartesian product of
metric x (summary, error bar, p-value), where metric can be a loss or
a curve summary: full_tbl.loc['foo', 'bar'] is a pandas series
with (metric bar on foo, corresponding error bar, statistical sig).
All entries must be of type Decimal.


	shift_mod (int [https://docs.python.org/3/library/functions.html#int]) – Required modulus for output. This is usually 1 or 3. When an SI prefix
is desired on the shift then a modulus of 3 is used. Must be >= 1.
Use None for no shifting at all.


	pad (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pad resulting strings with spaces to make the decimal points
align. If the resulting strings are TeX source, this will make the
source more readable but not effect the appearence of the compiled TeX.


	crap_limit_max (dict of str to int) – Dictionary with the log10 max_clip for each column. This is optional.


	crap_limit_min (dict of str to int) – Dictionary with the log10 min_clip for each column. This is optional.


	non_finite_fmt (dict of str to str) – Display format when estimate is non-finite. For example, for latex
looking output, one could use:
{'inf': r'\infty', '-inf': r'-\infty', 'nan': '--'}.






	Returns

	
	perf_tbl_str (DataFrame, shape (n_methods, n_metrics * 2)) – DataFrame with summary string of each method according to each
curve or loss function. The rows are the methods. The columns are a
hierarchical index that is the cartesian product of
metric x (estimate with error, p-value), where metric can be a loss or
a curve summary: full_tbl.loc['foo', 'bar'] is a pandas series
with (metric bar on foo with error bar, statistical sig).
All entries are of type string.


	shifts (dict of str to int) – The used shift in log10 scale for each metric.















	
mlpaper.sciprint.get_shift_range(x_dec_list, shift_mod=1)

	Helper function to find_shift that find upper and lower limits to
shift the estimates based on the constraints. This bounds the search space
for the optimal shift.

Attempts to fulful three constraints:
1) All estimates displayed to dot after shifting
2) At least one estimate is >= 1 after shift to avoid space waste with 0s.
3) shift % shift_mod == 0
If not all 3 are possible then requirement 2 is violated.


	Parameters

	
	x_dec_list (array-like of Decimal) – List of Decimal estimates to format. Assumes all non-finite and
clipped values are already removed.


	shift_mod (int [https://docs.python.org/3/library/functions.html#int]) – Required modulus for output. This is usually 1 or 3. When an SI prefix
is desired on the shift then a modulus of 3 is used. Must be >= 1.






	Returns

	
	min_shift (int) – Minimum shift (inclusive) to consider to satisfy contraints.


	max_shift (int) – Maximum shift (inclusive) to consider to satisfy contraints.


	all_small (bool) – If True, it means constraint 2 needed to be violated. This could be
used to flag warning.















	
mlpaper.sciprint.just_format_it(perf_tbl_fp, unit_dict={}, shift_mod=None, crap_limit_max={}, crap_limit_min={}, EB_limit={}, non_finite_fmt={}, use_tex=False, use_prefix=True)

	One stop function call to format a results table and get the output as
a string in readable human plain text or as LaTeX source.


	Parameters

	
	perf_tbl_fp (DataFrame, shape (n_methods, n_metrics * 3)) – DataFrame with curve/loss summary of each method according to each
curve or loss function. The rows are the methods. The columns are a
hierarchical index that is the cartesian product of
metric x (summary, error bar, p-value), where metric can be a loss or
a curve summary: full_tbl.loc['foo', 'bar'] is a pandas series
with (metric bar on foo, corresponding error bar, statistical sig).
The entries should all be float.


	unit_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict] or str to str) – Dictionary from metric name to associated unit symbol. Treat as
unitless if entry is missing for a metric.


	shift_mod (int [https://docs.python.org/3/library/functions.html#int]) – Required modulus for output. This is usually 1 or 3. When an SI prefix
is desired on the shift then a modulus of 3 is used. Must be >= 1.
Use None for no shifting at all.


	crap_limit_max (dict of str to int) – Dictionary with the log10 max_clip for each column. This is optional.


	crap_limit_min (dict of str to int) – Dictionary with the log10 min_clip for each column. This is optional.


	EB_limit (dict of str to int) – Error bar limit in log10 scale for each column. If the
error > 10 ** EB_limit then the error is treated as if
error = inf since it is too large to be useful. This dictionary is
optional. Can be positive or negative integer since in log10 scale.


	non_finite_fmt (dict of str to str) – Display format when estimate is non-finite. For example, for latex
looking output, one could use:
{'inf': r'\infty', '-inf': r'-\infty', 'nan': '--'}.


	use_tex (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, adjust headers with TeX based formatting.


	use_prefix (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, attempt to apply SI prefix to unit symbol for shift.






	Returns

	str_out – String containing formatted table in plain text or LaTeX.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]





Notes

For Pandas use_tex=True, LaTeX export requires
\usepackage{booktabs} and proper aligning of the decimal point requires
\usepackage{siunitx}.






	
mlpaper.sciprint.pad_num_str(num_str_list, pad=' ')

	Pad strings of formatted numbers so they are aligned at the decimal
point when displayed in a right aligned manner (which is typical for
numeric data).


	Parameters

	
	num_str_list (array-like of str, shape (n,)) – List of numbers already formatted as strings.


	pad (str [https://docs.python.org/3/library/stdtypes.html#str]) – Padding character, typically space. Must be length 1.






	Returns

	L – List of padded strings.



	Return type

	list of str, shape (n,)





Examples

>>> sp.pad_num_str(['-55.5', '1.12(34)', '0'], pad='~')
['-55.5~~~~~', '1.12(34)', '0~~~~~~~']










	
mlpaper.sciprint.print_estimate(mu, EB, shift=0, min_clip=Decimal('-Infinity'), max_clip=Decimal('Infinity'), below_fmt='<{0:, f}', above_fmt='>{0:, f}', non_finite_fmt={})

	Convert a mean and error bar pair in Decimal to a string.


	Parameters

	
	mu (Decimal) – Value of estimate in Decimal. Mu must have enough precision to be
defined to dot after shifting. Can be inf or nan.


	EB (Decimal) – Error bar on estimate in Decimal. Must be non-negative. It must be
defined to same precision (quantum) as mu if EB is finite positive
and mu is positive.


	shift (int [https://docs.python.org/3/library/functions.html#int]) – How many decimal points to shift mu for display purposes. If mu
is in meters and shift=3 than we display the result in mm, i.e., x1e3.


	min_clip (Decimal) – Lower limit clip value on estimate. If mu < min_clip then simply
return < min_clip for string. This is used for score metric where a
lower metric is simply on another order of magnitude to other methods.


	max_clip (Decimal) – Upper limit clip value on estimate. If mu > max_clip then simply
return > max_clip for string. This is used for loss metric where a
high metric is simply on another order of magnitude to other methods.


	below_fmt (str [https://docs.python.org/3/library/stdtypes.html#str] (format string)) – Format string to display when estimate is lower limit clipped, often:
‘<{0:,f}’.


	above_fmt (str [https://docs.python.org/3/library/stdtypes.html#str] (format string)) – Format string to display when estimate is upper limit clipped, often:
‘>{0:,f}’.


	non_finite_fmt (dict of str to str) – Display format when estimate is non-finite. For example, for latex
looking output, one could use:
{'inf': r'\infty', '-inf': r'-\infty', 'nan': '--'}.






	Returns

	std_str – String representation of mu and EB. This is in format 1.234(56)
for mu=1.234 and EB=0.056 unless there are non-finite values
or a value has been clipped.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
mlpaper.sciprint.print_pval(pval, below_fmt='<{0:, f}', non_finite_fmt={})

	Convert decimal p-value into string representation.


	Parameters

	
	pval (Decimal) – Decimal p-value to represent as string. Must be in [0,1] or nan.


	below_fmt (str [https://docs.python.org/3/library/stdtypes.html#str] (format string)) – Format string to display when p-value is lower limit clipped, often:
'<{0:,f}'.


	non_finite_fmt (dict of str to str) – Display format when estimate is non-finite. For example, for latex
looking output, one could use: {'nan': '--'}.






	Returns

	pval_str – String representation of p-value. If p-value is zero or minimum
Decimal value allowable in precision of pval. We simply return clipped
string, e.g. '<0.0001', as value.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
mlpaper.sciprint.str_print_len(x_str)

	Estimated width of formatted number of string when not displayed using
a fixed width font. This is the number of characters not including .
and , because they are assumed to be of negligible width.


	Parameters

	x_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – Already formatted number string.



	Returns

	str_len – Length of string without negligible width characters . and ,.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
mlpaper.sciprint.table_to_latex(perf_tbl_str, shifts, unit_dict, use_prefix=True)

	Export performance table already converted to string entries to a
single string of LaTeX source.

This function includes adjustement of headers to reflect shift and display
units.


	Parameters

	
	perf_tbl_str (DataFrame, shape (n_methods, n_metrics * 2)) – DataFrame with summary string of each method according to each
curve or loss function. The rows are the methods. The columns are a
hierarchical index that is the cartesian product of
metric x (estimate with error, p-value), where metric can be a loss or
a curve summary: full_tbl.loc['foo', 'bar'] is a pandas series
with (metric bar on foo with error bar, statistical sig).
All entries must be of type string.


	shifts (dict of str to int) – The used shift in log10 scale for each metric.


	unit_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict] or str to str) – Dictionary from metric name to associated unit symbol. Treat as
unitless if entry is missing for a metric.


	use_prefix (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, attempt to apply SI prefix to unit symbol for shift.






	Returns

	latex_str – String containing LaTeX export of perf_tbl_str.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]





Notes

Pandas LaTeX export requires \usepackage{booktabs} and proper aligning
of the decimal point requires \usepackage{siunitx}.






	
mlpaper.sciprint.table_to_string(perf_tbl_str, shifts, unit_dict, use_prefix=True)

	Export performance table already converted to string entries to a single
string of nicely formatted output in human readable form.

This function includes adjustement of headers to reflect shift and display
units.


	Parameters

	
	perf_tbl_str (DataFrame, shape (n_methods, n_metrics * 2)) – DataFrame with summary string of each method according to each
curve or loss function. The rows are the methods. The columns are a
hierarchical index that is the cartesian product of
metric x (estimate with error, p-value), where metric can be a loss or
a curve summary: full_tbl.loc['foo', 'bar'] is a pandas series
with (metric bar on foo with error bar, statistical sig).
All entries must be of type string.


	shifts (dict of str to int) – The used shift in log10 scale for each metric.


	unit_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict] or str to str) – Dictionary from metric name to associated unit symbol. Treat as
unitless if entry is missing for a metric.


	use_prefix (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, attempt to apply SI prefix to unit symbol for shift.






	Returns

	latex_str – String containing nicely formatted output in human readable form.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]












Utilities


	
mlpaper.util.area(x_curve, y_curve, kind)

	Compute area under function in vectorized way.


	Parameters

	
	x_curve (ndarray, shape (n_boot, n_thresholds)) – The sample points corresponding to the y values. Must be sorted.


	y_curve (ndarray, shape (n_boot, n_thresholds)) – Input array to integrate. Must be same size as x_curve. Operation
performed independently for each column.


	kind ({'linear', 'kind'}) – Type of interpolation scheme to turn points into lines.






	Returns

	auc – Area under curve. Has same length as x_curve has columns.



	Return type

	ndarray, shape (n_boot,)










	
mlpaper.util.cummax_strict(x, copy=True)

	Minimally increase array elements to make the array strictly increasing.


	Parameters

	
	x (ndarray, shape (n_samples,)) – A list of points.


	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, modify x in place.






	Returns

	x – A list of points that are now strictly sorted. If x was already
sorted then the new points will be as miniminally changed as the
floating point representation allows.



	Return type

	ndarray, shape (n_samples,)










	
mlpaper.util.epsilon_noise(x, default_epsilon=1e-10, max_epsilon=1.0)

	Add a small amount of noise to a vector such that the output vector has
all unique values. The ordering of the resutiling vector remains the
same: argsort(output) = argsort(input) if input values are unique.


	Parameters

	
	x (ndarray, shape (n_samples,)) – Input vector to be noise corrupted. Must have all finite values.


	default_epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Default noise to add for singleton lists, musts be > 0.0.


	max_epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Maximum amount of noise corruption regardless of scale found in x.






	Returns

	x – Noise correupted version of input. All values are unique with
probability 1. The ordering is the same as the input if the inputs
values are all unique.



	Return type

	ndarray, shape (n_samples,)










	
mlpaper.util.eval_step_func(x_grid, xp, yp, ival=None, assume_sorted=False, skip_unique_chk=False)

	Evaluate a stepwise function. Based on the ECDF class in statsmodels.
The function is assumed to cadlag (like a CDF function).

This is a non-OOP equivalent to class:
statsmodels.distributions.empirical_distribution.StepFunction
with side='right' option to be like a CDF.


	Parameters

	
	x_grid (ndarray, shape (n_grid,)) – Values to evaluate the stepwise function at.


	xp (ndarray, shape (n_samples,)) – Points at which the step function changes. Typically of type float.


	yp (ndarray, shape (n_samples,)) – The new values at each of the steps


	ival (scalar or None [https://docs.python.org/3/library/constants.html#None]) – Initial value for step function, e.g., the value of the step function
at -inf. If None, we just require that all x_grid values are after
the first step.


	assume_sorted (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True is xp is alreaded sorted in increasing order. This skips
sorting for computational speed.


	skip_unique_chk (bool [https://docs.python.org/3/library/functions.html#bool]) – Assume all values in xp are sorted and unique. Setting to True skips
checking this condition for speed.






	Returns

	y_grid – Step function defined by xp and yp evaluated at the points in
x_grid.



	Return type

	ndarray, shape (n_grid,)










	
mlpaper.util.normalize(log_pred_prob)

	Normalize log probability distributions for classification.


	Parameters

	log_pred_prob (ndarray, shape (n_samples, n_labels)) – Each row corresponds to a categorical distribution with unnormalized
probabilities in log scale. Therefore, the number of columns must be at
least 1.



	Returns

	log_pred_prob – A row-wise normalized (exp(log_pred_prob) sums to 1 on each row)
version of the input.



	Return type

	ndarray, shape (n_samples, n_labels)










	
mlpaper.util.one_hot(y, n_labels)

	Same functionality sklearn.preprocessing.OneHotEncoder but avoids
extra dependency.


	Parameters

	
	y (ndarray of type int, shape (n_samples,)) – Integers in range [0, n_labels) to be one-hot encoded.


	n_labels (int [https://docs.python.org/3/library/functions.html#int]) – Number of labels, must be >= 1. This is not infered from y because
some labels may not be found in small data chunks.






	Returns

	y_bin – One hot encoding of y, with size (len(y), n_labels)



	Return type

	ndarray of type bool, shape (n_samples, n_labels)










	
mlpaper.util.remove_chars(x_str, del_chars)

	Utility to remove specified characters from string.


	Parameters

	
	x_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – Generic input string.


	del_chars (str [https://docs.python.org/3/library/stdtypes.html#str]) – String containing characters we would like to remove.






	Returns

	x_str – Generic input string after removing characters in del_chars.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
mlpaper.util.unique_take_last(xp, yp=None)

	Take unique points in a sorted list xp. When duplicates occur take the
last element and its corresponding element in an auxilary list yp.

This function is useful for taking a set of points and making a proper step
function from them. A step function is ambiguous when there are multiple
points at the same x coordinate. Similar functionality can be obtained from
np.unique but it takes the first rather than last element when duplicates
occur.


	Parameters

	
	xp (ndarray, shape (n_samples,)) – A sorted list of points.


	yp (None [https://docs.python.org/3/library/constants.html#None] or ndarray of shape (n_samples,)) – Optional points that must be kept allong with the x points. If xp
are points on the x-axis, then yp are the y coordinate points.






	Returns

	
	xp (ndarray, shape (m_samples,)) – Input xp after removing extra points. m_samples <= n_samples.


	yp (ndarray, shape (m_samples,)) – Input yp after removing extra points. m_samples <= n_samples.
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